On the nonnegative inverse eigenvalue problem of traditional matrices

نویسندگان

  • A. M. Nazari Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
  • S. Kamali Maher Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
چکیده مقاله:

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the nonnegative inverse eigenvalue problem of traditional matrices

in this paper, at rst for a given set of real or complex numbers  with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which  is its spectrum. in continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Nonnegative Inverse Eigenvalue Problem

Nonnegative matrices have long been a sorce of interesting and challenging mathematical problems. They are real matrices with all their entries being nonnegative and arise in a num‐ ber of important application areas: communications systems, biological systems, economics, ecology, computer sciences, machine learning, and many other engineering systems. Inverse eigenvalue problems constitute an ...

متن کامل

The inverse eigenvalue problem via orthogonal matrices

In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvec...

متن کامل

Numerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices

Presented are two related numerical methods, one for the inverse eigenvalue problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projection ideas. For the symmetric problem, the main computational component of each iteration is an eigenvalue-eigenvector decomp...

متن کامل

On the Inverse Eigenvalue Problem for Real Circulant Matrices

The necessary condition for eigenvalue values of a circulant matrix is studied It is then proved that the necessary condition also su ces the existence of a circulant matrix with the prescribed eigenvalue values Introduction An n n matrix C of the form C c c cn cn c c cn cn cn c cn c c cn c is called a circulant matrix As each row of a circulant matrix is just the previous row cycled forward on...

متن کامل

The real nonnegative inverse eigenvalue problem is NP-hard

A list of complex numbers is realizable if it is the spectrum of a nonnegative matrix. In 1949 Sulěımanova posed the nonnegative inverse eigenvalue problem (NIEP): the problem of determining which lists of complex numbers are realizable. The version for reals of the NIEP (RNIEP) asks for realizable lists of real numbers. In the literature there are many sufficient conditions or criteria for lis...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 02  شماره 03

صفحات  167- 174

تاریخ انتشار 2013-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023